
<Insert Picture Here>

Oracle WebLogic Server Monitoring and Performance
Tuning

Duško Vukmanović
Principal Sales Consultant, FMW

Server Monitoring and Performance

Stuck Threads

• A Label given to threads not returned to thread pool

after a configured period of time (defaults to 600

secs)

• Does not mean threads are literally stuck or locked

(although possible) – they might be performing a long

running taskrunning task

• This is an informational label – Administrators cannot

stop the threads directly due to Java Threading design

• The Server or the Work Managers can be

configured to shutdown or go to an Admin State

once a certain number of threads become stuck

given to threads not returned to thread pool

after a configured period of time (defaults to 600

Does not mean threads are literally stuck or locked

they might be performing a long-

Administrators cannot

due to Java Threading design

Work Managers can be

configured to shutdown or go to an Admin State

once a certain number of threads become stuck

Taking Thread Dumps

• Take thread dumps by using:

• Windows: 'ctrl-break‘ or ‘ctrl-pause’

• Unix: kill -3 <pid>

• Admin Console � Server Instance

• Thread Dumps provide:• Thread Dumps provide:

• Holistic view of the state of application server threads at that instant in time

• Information about glaring issues such as

• Hot spots within code which seem to be called often

• Portions of code where the application seems to be hung

• Locking and thread synchronization issues in an application

pause’

Server Instance � Monitoring � Dump Thread Stacks

Holistic view of the state of application server threads at that instant in time

Information about glaring issues such as

Hot spots within code which seem to be called often

Portions of code where the application seems to be hung

Locking and thread synchronization issues in an application

WebLogic Server Work WebLogic Server Work

Manager Overview

<Insert Picture He

WebLogic Server Work WebLogic Server Work

Real World Overload Protection
WebLogic Work Managers

Real World Overload Protection

WebLogic Server Overload Protection

• Protect against cascading failures

– If maximum number of Database connections

are in use, do not allocate new threads to service

web requests that need a database connection

Examples where this is applicable

• Protect against hogging applications

– If multiple applications are deployed to the same

server, ensure badly behaving applications do

not consume all resources

WebLogic Server Overload Protection

Protect against cascading failures

If maximum number of Database connections

are in use, do not allocate new threads to service

web requests that need a database connection

Protect against hogging applications

If multiple applications are deployed to the same

server, ensure badly behaving applications do

Work Management Concerns

• Thread pool size for optimum performance?

– Workload can vary (time of day, event driven, etc.)

– Handle overload conditions gracefully

• Prioritization of work

Optimally tuning servers is hard!

• Prioritization of work

– Across modules within single application

– Across multiple applications

– Across multiple classes of users

– Ordered processing of requests (one request at a time)

Work Management Concerns

Thread pool size for optimum performance?

Workload can vary (time of day, event driven, etc.)

Handle overload conditions gracefully

Across modules within single application

Ordered processing of requests (one request at a time)

Typical Solutions

• Overprovision resources
– Size thread pools for maximum load factor, usually requiring many load

• Deploy applications into different server instances

Work Management Concerns

• Build additional machinery to de

=> Sub-optimal ROI and increased Complexity

Size thread pools for maximum load factor, usually requiring many load-test runs to optimize

Deploy applications into different server instances

 detect overload condition and react

optimal ROI and increased Complexity

WebLogic Server Work Managers

• Indicate your intent

• WebLogic is on autopilot adjusting to meet your goals

Work Management on Autopilot

WebLogic Server Work Managers

WebLogic is on autopilot adjusting to meet your goals

WebLogic Server Work Managers

• Work Prioritization
– Applications define resource requirements via meta

low-level technical constructs (thread counts)

– User-specific SLAs can be defined

• Thread Pool Management

Core Principles

• Thread Pool Management

– Applications should not have to configure and maintain thread pools

• WLS manages this internally and automatically

• Without necessarily requiring Administrator configuration and sizing input

• Overload Protection

– Standardized mechanism to respond to overload conditions

WebLogic Server Work Managers

Applications define resource requirements via meta-data they can relate to, rather than

level technical constructs (thread counts)

Applications should not have to configure and maintain thread pools

automatically

Without necessarily requiring Administrator configuration and sizing input

Standardized mechanism to respond to overload conditions

WLS Work Management

• New Thread Pool Implementation
– Single internally managed thread pool and priority

application requests

• Request “Priority” dynamic and internally computed to meet application

– Thread Count Self-Tuning

Key Components

– Thread Count Self-Tuning

• Self-tuning thread pool monitors overall throughput every two seconds

• Present thread count, measured throu
count needs to change

• New threads automatically added/removed as needed

• Benefits Administrators and Operators
testing or guesswork just to pick a static thread pool size that does not adapt to
changing workloads

New Thread Pool Implementation
Single internally managed thread pool and priority-based request queue service all

Request “Priority” dynamic and internally computed to meet application-defined goals

tuning thread pool monitors overall throughput every two seconds

roughput, and past history determines if thread

New threads automatically added/removed as needed

Benefits Administrators and Operators - no need to conduct tedious performance
testing or guesswork just to pick a static thread pool size that does not adapt to

WLS Work Management

• Work Managers
– Runtime abstraction used by applications to define resource requirements

– Work Manager Components

• Request Class

– Fair-Share – desired share of server resources for app

– Response Time –desired app response time

Key Components

– Response Time –desired app response time

– Context Based – user-specific SLAs

• Minimum Thread Constraint

• Maximum Thread Constraint

• Capacity

– Specified in application descriptor (weblogic.xml, weblogic
application.xml)

– Can be accessed programmatically via CommonJ

Runtime abstraction used by applications to define resource requirements

desired share of server resources for app

desired app response timedesired app response time

specific SLAs

Specified in application descriptor (weblogic.xml, weblogic-ejb.xml, weblogic-

CommonJ API – JSR-237

Fair Share

• Desired share of server resources

• Thread usage become higher as fair share number increases

• Fair shares are relative to other

<work-manager>

Work Manager Examples

<name>highfairshare_workmanager

<fair-share-request-class>

<name>high_fairshare</name>

<fair-share>80</fair-share>

</fair-share-request-class>

</work-manager>

Desired share of server resources

Thread usage become higher as fair share number increases

er fair shares defined in the system

highfairshare_workmanager</name>

</name>

share>

Response Time Goal

• Desired response-time goal in milliseconds

• Response-time goals relative to other response goals and fair shares

• Workload is distributed to application
– Two applications each set at 80 would result in each getting ~50% of the CPU

Work Manager Examples

<work-manager>

<name>highfairshare_workmanager</name>

<fair-share-request-class>

<name>high_fairshare</name>

<fair-share>80</fair-share>

</fair-share-request-class>

</work-manager>

time goal in milliseconds

time goals relative to other response goals and fair shares

ions based on the ratio of their Fair Share.
Two applications each set at 80 would result in each getting ~50% of the CPU

</name>

Context Based

• Currently look at security name and group of user submitting the request

<work-manager> <name>context_workmanager</name>

<context-request-class>

<name>test_context</name>

<context-case>

<user-name>platinum_user</user-name>

Work Manager Examples

<user-name>platinum_user</user-name>

<request-class-name>high_fairshare</request

</context-case>

<context-case>

<user-name>evaluation_user</user-name>

<request-class-name>low_fairshare</request

</context-case>

</context-request-class>

</work-manager>

Currently look at security name and group of user submitting the request

name>name>

</request-class-name>

name>

</request-class-name>

How to use Work Managers

• Coarse Grained

• Target at the entire server (“default” Work Manager)

• Target entire applications or modules
<wl-dispatch-policy>myAppWorkManager</wl

• Fine Grained

• Target individual JSPs, Servlets, EJBs, MDBs• Target individual JSPs, Servlets, EJBs, MDBs
<servlet> ...

<init-param>

<param-name>wl-dispatch-policy</param

<param-value>myCustomWorkManager</param

• Programmatically via JNDI lookup
InitialContext ic = new InitialContext();

commonj.work.WorkManager wm = (commonj.work.WorkManager

How to use Work Managers

Target at the entire server (“default” Work Manager)

Target entire applications or modules - e.g. weblogic.xml
wl-dispatch-policy>

, EJBs, MDBs, EJBs, MDBs

param-name>

param-value> ...

Programmatically via JNDI lookup

commonj.work.WorkManager)ic.lookup("java:comp/env/wm/myWM");

WLS behavior under test scenarioWLS behavior under test scenario

D E M O N S T D E M O N S T R A T I O N

Oracle JRockit Mission Control

Development

Deploy

Profiling &
performance
tuning

Production

diagnostics

Regression testing

Troubleshooting

Mission Control

Operations

Deploy

Monitoring

Alerts & triggers

Production

diagnostics

Troubleshooting

Use Cases
JRockit Mission Control

Debug Application

Optimize Application

Developer

Find, Diagnose and Fix Issues

Monitor Application

Debug Application

Optimize Application

Support / Admin

What can you Monitor?

CPU Usage

Memory & Heap Usage

Garbage Collection Activity

Thread Usage and stack traces

Runtime Monitoring & Profiling
JRockit Mission Control

Thread Usage and stack traces

Mbeans with Mbean Browser

What can you Profile?

• User-selected Java Methods

• User-selected Exceptions

Runtime Monitoring & Profiling

Oracle JRockit Mission Control
Monitoring Dashboard

Oracle JRockit Mission Control

Oracle JRockit Mission Control
Monitoring Threads

Oracle JRockit Mission Control

What is the JRockit Flight Recorder?

• New in JRockit R28

• “Circular buffer” in JRockit JVM that stores
diagnostic data

• Always on

• New data comes in and is stored, old data dropped
off

• Built-in integration with JRMC

• Replaces JRMC Runtime Analyzer and Latency • Replaces JRMC Runtime Analyzer and Latency
Analyzer

• Very low/near zero overhead

• Uses data already used by JVM

• Data can include events from the JVM and from
any other event producer

• WebLogic Server (WLDF)

• Fusion Middleware (DMS)

Flight Recorder?

New data comes in and is stored, old data dropped

Replaces JRMC Runtime Analyzer and Latency

New Data

Time
Replaces JRMC Runtime Analyzer and Latency

Data can include events from the JVM and from

F
li
g

h
t

R
e

c
o

rd
in

g

Old Da

Time

DCC7

Slide 24

DCC7 I fixed the color on this
David Cabelus; 5.5.2010.

Use Cases
JRockit Flight Recorder

• What it is designed for?

• Provide diagnostic information in running production systems

• Look back in time to see what happened after a crash

• Capture most recent activity to enable analysis leading up to an issue

• Capture data from all levels JVM, WLS, DMS, etc…

• Offline/offsite analysis can be done using the JRMC GUI• Offline/offsite analysis can be done using the JRMC GUI

• JRockit dumps capture information to assist in crash

• What it is not designed for?

• Large event payloads or very high volumes of events

• Long history

• Not a replacement for Debug logging or the server logging

Provide diagnostic information in running production systems

Look back in time to see what happened after a crash

Capture most recent activity to enable analysis leading up to an issue

Capture data from all levels JVM, WLS, DMS, etc…

Offline/offsite analysis can be done using the JRMC GUIOffline/offsite analysis can be done using the JRMC GUI

JRockit dumps capture information to assist in crash-analysis

Large event payloads or very high volumes of events

Not a replacement for Debug logging or the server logging

Questions?

